A New Standard of Innovation





# A New Standard of Innovation

InBody is continuously evolving the way body composition is measured and expanding the application in various fields.

With the mission to deliver the utmost reliable and innovative body composition analysis, now InBody introduces the next generation of body composition analyzer, InBody970.

The InBody970 is equipped with state-of-the-art 3MHz technology and new ergonomic design to better suit diverse patients with different conditions and medical specialties than ever before.



| received and the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (金) わりたのかがに<br>からいたいで、<br>のののので、<br>のののので、<br>のののので、<br>のののので、<br>のののので、<br>のののので、<br>のののので、<br>のののので、<br>ののので、<br>ののので、<br>ののので、<br>ののので、<br>ののので、<br>ののので、<br>ののので、<br>ののので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のの<br>ので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のので、<br>のの<br>の<br>のので<br>の<br>の<br>の<br>の | Inn            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | InB            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 Di           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>(</b> ) Sma |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -              |

Innovative Design

InBody's Accurate 3MHz Measurement Technology

7 Different Result Sheets for In-depth Analysis

Smart InBody Measurement



# InBody970 Highlights

#### **Innovative Design**

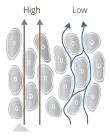
The InBody970 delivers a new seamless look with the premise of detail. The concave head design protects the privacy of the subject during measurement while also enhancing user's visibility. Stainless electrodes and enhanced footplate improve conductivity and allow weight measurements up to 300kg.

#### InBody's Accurate 3MHz Measurement Technology

As the frequency increases, it becomes more difficult to control in the human body, possibly resulting in irregular impedance measurements. InBody technology has overcome this limitation and achieved the feat of controlling 3MHz frequency. The 3MHz frequency is able to penetrate the human cell membranes more effectively and therefore better reflects Intracellular Water in comparison to lower frequencies. This then enables us to differentiate between the Intracellular Water and the Extracellular Water, resulting in a more accurate measurement of Total Body Water.

#### 7 Different Result Sheets for In-depth Analysis

- Evaluation Result Sheet can be used to evaluate and compare body composition results by age.
- Research Result Sheet incorporates frequently used parameters and provides segmental graphs that offer a more comprehensive analysis.
- Comparison Result Sheet provides a Cole-Cole plot graph along with other significant parameters to compare previous and current results.
- Visceral Fat Result Sheet can be used to monitor changes in subcutaneous and visceral fat.
- \* Body Composition Result Sheet, Body Composition Result Sheet for Children, Body Water Result Sheet are also available.


#### Smart InBody Measurement

The ID recognition process can be performed quickly and with ease by using the InBody BAND, Fingerprint, or Barcode scanner.



# InBody Technology





### Body Composition Evaluation by Age Based on InBody Big Data

InBody provides age-specific graphs for each body composition analysis parameter based on globally accumulated InBody Data. With this, a comprehensive analysis is provided so that you can compare your data to the data of the young age group (T-score) and the same age group (Z-score).

### Multi-Frequency for In-Depth Analysis

Low frequencies do not pass through the cell membranes well so they mainly reflect ECW, while high frequencies pass through the cell membranes and therefore reflect both ECW and ICW. By using multi-frequencies, InBody measures ECW and ICW separately and measures TBW accurately to check the water balance. As the newest technological advancement, InBody utilizes the 3Mhz frequency, which enables the precise measurement of a more diverse range of patients and subjects with special body compositions. Furthermore, the technology that enabled the utilization of 3MHz also ensures the measurement stability from other frequencies even when there are outside interferences.

InBody placed a total of eight electrodes- one current and one voltage electrode on each handle and footplate. With this electrode design, it maintains the measurement starting point at all times. Even if the measurement postures are changed or multiple measurements are

\* ECW: Extracellular Water, ICW: Intracellular Water, TBW: Total Body Water

High Reproducibility Assured by 8-Point Tactile Electrodes



# 5kHz 50kHz 250kHz

# Multi-frequency Reactance Data for Enhanced Clinical Use

Reactance is a resistance that occurs in cell membranes, which is related to the cellular health such as somatic cell mass, structural integrity, and physiological functional level of the cell. Besides 50kHz, InBody improved segmental reactance measurement technology in 5kHz, 250kHz as well. Through this, InBody provides more parameters which can be used in various clinical fields to pre-screen diseases and evaluate nutritional status.



#### **Direct Segmental Measurement-BIA**

made, it is able to maintain high reproducibility.

Each of our body segments is different in length and cross-sectional area. Arms and legs are longer and narrower in comparison to the trunk, so their impedance values are higher than the trunk. On the other hand, the trunk is shorter and wider than the arms and legs, so its impedance value is lower. However, the trunk muscle mass accounts for almost half of the whole body muscle mass, which is why a small impedance change in the trunk has a greater impact on the amount of whole body muscle mass. Therefore, the trunk must be measured separately in order to measure the whole body muscle mass accurately.

### Impedence Age Gender Other

### No Estimations or Empirical Equations

In the past, the conventional BIA devices used empirical estimations to compensate technological limitations of whole body measurement and use of single low frequency. To calculate the body composition by these conventional BIA devices, they needed to add statistical data such as age and gender in order to calculate results. However, InBody overcame these limitations with technologies of using Multi-Frequency, Direct Segmental Measurement, and 8-Point Tactile Electrodes System so that InBody provides results that are not affected by age, ethnicity or gender. Only reference ranges or scores based on age and gender are used as a basis for evaluating the values determined.

# InBody Application



### Rehabilitation

#### Monitor injury and post-surgical recovery.

Yoshimura, Y., Bise, T., Nagano, F., Shimazu, S., Shiraishi, A., Yamaga, M., & Koga, H. (2018). Systemic inflammation in the recovery stage of stroke: its association with sarcopenia and poor functional rehabilitation outcomes. Progress in Rehabilitation Medicine, 3, 20180011.

#### **Professional Sports**

# Manage body composition to enhance performance and minimize injury risk.

Almăjan-Guţă, B., Rusu, A. M., Nagel, A., & Avram, C. (2015). Injury frequency and body composition of elite Romanian rugby players. Timisoara Physical Education and Rehabilitation Journal, 8(15), 17-21.



#### Nutrition

Monitor body composition change for nutritional evaluation. Kim, H.S., Lee, E.S., Lee, Y.J., Jae Ho Lee, C. T.L., & Cho, Y.J (2015) Clinical Application of Bioelectrical Impedance Analysis and its Phase Angle For Nutritional Assessment of Critically III Patients. Journal of the Korean Society for Parenteral and Enteral Nutrition, 7(2), 54-61

### Nephrology

# Obtain useful insights on dialysis patients' hydration and nutrition status.

Ando, M., Suminaka, T., Shimada, N., Asano, K., Ono, J. I., Jikuya, K., & Mochizuki, S. (2018). Body water balance in hemodialysis patients reflects nutritional, circulatory, and body fluid status. Journal of Biorheology, *32*(2), 46-55.



#### Geriatric

Monitor muscle mass and muscle imbalance to screen sarcopenia with SMI, which are related to risks of fall and frailty. Yoshimura, Y., Wakabayashi, H., Bise, T., & Tanoue, M. (2018). Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clinical Nutrition, 37(6), 2022-2028.

### Cardiology

Pre-screen the risk factors of cardiovascular disease.

Thomas, E., Gupta, P. P., Fonarow, G. C., & Horwich, T. B. (2019). Bioelectrical impedance analysis of body composition and survival in patients with heart failure. Clinical cardiology, 42(1), 129-135.

### Validations of More Than 3,000 Research Papers

### Study 1 HIGH ACCURACY AND REPRODUCIBILITY OF FAT FREE MASS & PERCENT BODY FAT MEASUREMENTS COMPARED WITH DEXA

The measurement (mean  $\pm$  SD) for FFM with DXA was 52.8  $\pm$  11.0, and BIA was 53.6  $\pm$  11.0. Delta (S-MFBIA vs DXA) was 0.8  $\pm$  2.2 (5% limits of agreement –3.5 to +5.2), and concordance correlation coefficient (CCC) was 0.98 (95% CI, 0.97–0.98). The measurements (mean  $\pm$  SD) for PBF with DXA was 37.5  $\pm$  10.6% and S-MFBIA was 36.6  $\pm$  11.3%. Delta (S-MFBIA vs DXA) was –0.9  $\pm$  2.6 (5% limits of agreement 6.0 to +4.2), and CCC was 0.97 (95% CI, 0.96–0.98).

Hurt, Ryan T., et al. "The Comparison of Segmental Multifrequency Bioelectrical Impedance Analysis and Dual-Energy X-ray Absorptiometry for Estimating Fat Free Mass and Percentage Body Fat in an Ambulatory Population." Journal of Parenteral and Enteral Nutrition (2020).

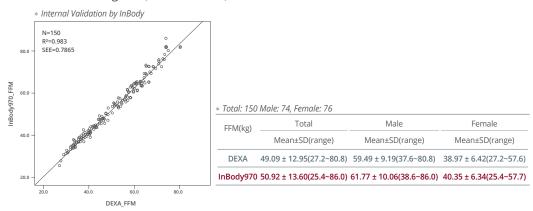
#### Study 2 HIGH CORRELATION WITH D20 DILUTION METHOD FOR TOTAL BODY WATER

The study concluded that the BIA device InBodyS10 showed good test-retest precision (%CV = 5.2 raw; 1.1 after outlier removal) and high accuracy to D<sub>2</sub>O for Total Body Water[TBWD<sub>2</sub>O = 0.956 TBWBIA, R<sup>2</sup>= 0.92, root mean squared error(RMSE) = 2.2kg]. %Fat estimates from DXA, ADP, D<sub>2</sub>O, and BIA all showed high correlation with the Lohman model.

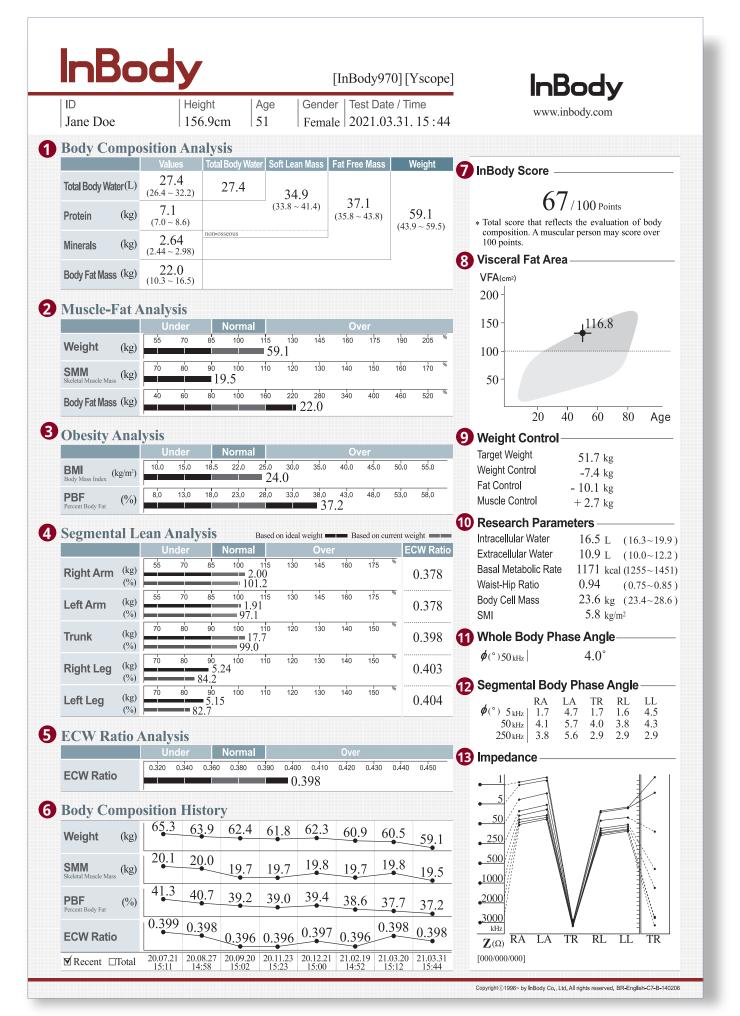
Ng, Bennett K., etal."Validation of rapid 4-component body composition assessment with the use of dual-energy X-ray absorptiometry and bioelectrical impedance analysis."

The American journal of clinical nutrition 108.4 (2018) :708-715.

#### Study 3 HIGH ACCURACY WITH COMPUTED TOMOGRAPHY FOR MUSCLE MASS


It was suggested that estimating muscle mass using DXA and BIA(InBody720) is a preferred method for diagnosis of sarcopenia in kidney transplant recipients. Both DXA and InBody showed high correlation with CT.

Yanishi, M., etal. "Dual energy X-ray absorptiometry and bioimpedance analysis are clinically useful for measuring muscle mass in kidney transplant recipients with sarcopenia."


Transplantation proceedings.Vol.50.No.1.Elsevier, 2018.

#### Study 4 HIGH CORRELATION OF FAT FREE MASS BETWEEN DEXA AND INBODY970

Total of 150 results were analyzed, excluding duplicate data from the same subject. Fat Free Mass measured by InBody970 had a very high correlation with DEXA of  $R^2=0.983$  or higher. (P value < 0.05)



# Body Composition Result Sheet



### **Result Sheet Interpretation**

#### Body Composition Analysis

Body weight is the sum of Total Body Water, Protein, Minerals, and Body Fat Mass. Maintain a balanced body composition to stay healthy.

#### 2 Muscle-Fat Analysis

The balance between Skeletal Muscle Mass and Body Fat Mass is a key health indicator. Muscle-Fat Analysis shows this balance by comparing the length of the bars for Weight, Skeletal Muscle Mass, and Body Fat Mass.

#### Obesity Analysis

Accurate obesity analysis cannot be performed using BMI, but the ratio of body fat compared to the weight, which is called the Percent Body Fat, must be assessed. The InBody970 can detect hidden health risks like Sarcopenic Obesity, in which a person appears slim on the outside but has a high percent body fat.

#### 4 Segmental Lean Analysis

Analyzing the lean mass in each segment helps identify imbalances and insufficiently developed lean mass, which can be used to develop targeted exercise programs. The lean mass of the arms, trunk, and legs are represented by two bars. The top bar shows how much lean mass there is in a segment compared to the ideal weight, and the bottom bar shows how sufficient the lean mass is to support your current weight.

#### **5** ECW Ratio Analysis

The extracellular water ratio shows the balance status of body water. The ratio between intra/extracellular water remains constant at about 3:2 ratio in healthy individuals, and when this balance is broken down edema may occur.

#### **6** Body Composition History

Using Body Composition History, you can monitor changes in Weight, Skeletal Muscle Mass, Percent Body Fat, and ECW Ratio. Taking regular InBody Tests and monitoring changes in body composition is a good step toward a healthier life.

#### InBody Score

Unique index created by InBody to make it easier to understand the current body composition status. The standard range is between 70~90 points, and based on the weight control, the point +,- from 80 points.

#### 8 Visceral Fat Area

Visceral Fat Area is the estimated area of the fat surrounding internal organs in the abdomen. Maintain a Visceral Fat Area under 100 cm² to minimize the risk of visceral fat related diseases. With Yscope the InBody970 provides more precise abdominal fat analysis by measuring abdominal impedance separately.

#### 9 Weight Control

Weight Control shows the recommended weight, fat, and muscle mass for a healthy body. The '+' means to gain and the '-' means to lose. Use the weight control to set your own goal.

#### Research Parameters

Various research parameters are provided such as Basal Metabolic Rate, Waist-Hip Ratio, Obesity Degree, Skeletal Muscle Mass Index (SMI), Body Cell Mass, and more.

#### 1 Whole Body Phase Angle

Phase Angle is related to the health status of the cell membrane. Strengthening of the cellular membrane and structural function will increase the Phase Angle, while damage or a decrease in function will result in a decrease in the Phase Angle.

#### 12 Segmental Body Phase Angle

Segmental Phase Angle indicates the Phase Angle of each part of the body, representing the level of structural integrity and function of the cell membrane.

### 13 Impedance

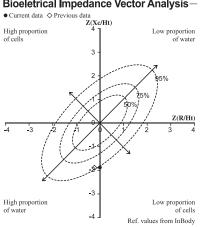
Impedance is the resistance that occurs when weak alternating current is applied to the human body. InBody visualizes the impedance with the graph. You can easily detect if there is reversed impedance error by checking crossed lines in the impedance graph. Below the impedance graph, you can also check the error codes.

| ID<br>Jane Doe                     |                | Height              |                     | Age<br>51     | Gende<br>  Femal  |          | : Date /<br>21.03.3 | ' Time<br>31. 15 : • | 44       |                            |
|------------------------------------|----------------|---------------------|---------------------|---------------|-------------------|----------|---------------------|----------------------|----------|----------------------------|
| Body Water                         | Comp<br>Un     |                     | Normal              |               |                   | Ove      | r                   |                      |          |                            |
| <b>TBW</b> (L)<br>Total Body Water | 40             | 60 90               | 100<br>100<br>127.4 | _             | 10 160            |          |                     | 20 240               | 96       | <b>Body</b><br>Protein     |
| ICW (1)                            | 40             | 60 90               | 100<br>6.5          | 110 14        | 10 160            | 180      | 200 2               | 20 240               | 96       | Minera<br>Body F           |
| ECW (L)                            | 70             | 80 90               | 100                 | 110 12        | 20 130            | 140      | 150 1               | 60 170               | 96       | Fat Fre<br>Bone N          |
| Extracellular Water                | · · ·          |                     | -10.5               | 1             |                   |          |                     |                      |          | Musc                       |
| ECW Ratio A                        |                | SIS<br>der          | Normal              |               |                   | Ove      | r                   |                      |          | Weight<br>Skeleta          |
| ECW Ratio                          |                | 0.340 0.360         |                     | 0.390 0.4     | 00 0.410<br>0.398 |          |                     | 440 0.450            | _        | Soft Le<br>Body F          |
| Segmental B                        | dv W           | /ater A             | nalvei              | 8             |                   |          |                     |                      |          | Whole                      |
| Jeginentai D                       | e              | der                 | Normal              |               |                   | Ove      |                     |                      |          | <b>¢</b> (°)5              |
| Right Arm (L)                      | 40             | 60 80               | 100                 | 120 14<br>.55 | 10 160            | 180      | 200 2               | 20 240               | 96       | Segm                       |
| Left Arm (L)                       | 40             | 60 80               | 100                 |               | 40 160            | 180      | 200 2               | 20 240               | %        | <b>Ø</b> (°)               |
| Trunk (L)                          | 70             | 80 90               | 100                 |               | 20 130            | 140      | 150 1               | 60 170               | %        | 25                         |
| Right Leg (L)                      | 70             | 80 90               | .12                 | 110 12        | 20 130            | 140      | 150 1               | 60 170               | %        | Bioele<br>● Current        |
| Left Leg (L)                       | 70             | 80 90               | 05                  | 110 12        | 20 130            | 140      | 150 1               | 60 170               | 96       | High prop<br>of cells      |
|                                    |                |                     |                     |               |                   |          |                     |                      |          |                            |
| Segmental E                        |                | auo Al              | 1219515             | •             |                   |          |                     |                      |          |                            |
| Over                               | -0.43<br>-0.42 |                     |                     |               |                   |          |                     |                      |          | -4 -3                      |
|                                    | -0.41          |                     |                     |               | 0.200             | 0.4      | 03                  | 0 <u>.40</u> 4       |          |                            |
| Slightly Over                      | -0.40          |                     |                     |               | 0.398             |          | _                   |                      |          |                            |
|                                    | -0.39          | 0.378               | 0.37                | 28            |                   |          |                     |                      |          | High prop                  |
| Normal                             | -0.37          | -                   | _                   |               |                   |          |                     |                      |          | of water                   |
|                                    | -0.36<br>R     | ight Arm            | Left A              | .rm           | Trunk             | Right    | Leg                 | Left Leg             |          | Impe                       |
| Body Water                         | Comp           | osition             | Histo               | rv            |                   | 1        |                     |                      |          |                            |
| Weight <sup>(kg)</sup>             |                |                     | 62.4                | 6 <u>1</u> .8 | 62.3              | 60.9     | 60.                 | 5 <u>5</u> 9.        | 1        | <u>50</u>                  |
| TBW (L)                            | 28.3           | 28.0                | 28.0                | 27.9          | 27.9              | 27.6     |                     | <u>.</u><br>8        | —        | <u>250</u><br>500          |
| Total Body Water                   | 17.0           | 16.9                | 16.9                | 16.8          | 16.8              |          |                     |                      | -        | 1000                       |
| Intracellular Water                | 11.3           | 11.1                | 11.1                | 11.0          | 11.1              | 16.7     | 16.<br>11.          | 1                    | —        | <u>2000</u><br><u>3000</u> |
| ECVV<br>Extracellular Water (L)    | 0.399          |                     | 11.1<br>•           | 11.0          | 11.1              | 10.9     |                     |                      | _        | $\mathbf{Z}^{(\Omega)}$    |
| ECW Ratio                          | 0.395          | 0.398               | 0.396               | 0.396         | 0.397             | 0.396    | 0.39                | 0.39                 | 8        | [000/000                   |
| ⊠Recent □Total                     | 20.07.2        | 1 20.08.27<br>14:58 | 20.09.20            | 20.11.23      | 20.12.21<br>15:00 | 21.02.19 | 9 21.03             | .20 21.03            | .31<br>4 |                            |

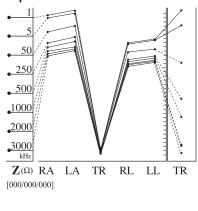


www.inbody.com

| Analysis |                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------|
| 7.1 kg   | (7.0~8.6)                                                                                                  |
| 2.64 kg  | (2.44~2.98)                                                                                                |
| 22.0 kg  | (10.3~16.5)                                                                                                |
| 37.1 kg  | (35.8~43.8)                                                                                                |
| 2.18 kg  | $(2.01 \sim 2.45)$                                                                                         |
| s —      |                                                                                                            |
| 59.1 kg  | (43.9~59.5)                                                                                                |
| 19.5 kg  | (19.5~23.9)                                                                                                |
| 34.9 kg  | (33.8~41.4)                                                                                                |
| 22.0 kg  | (10.3~16.5)                                                                                                |
|          | 7.1 kg<br>2.64 kg<br>22.0 kg<br>37.1 kg<br>2.18 kg<br><b>5</b><br><b>5</b><br>9.1 kg<br>19.5 kg<br>34.9 kg |

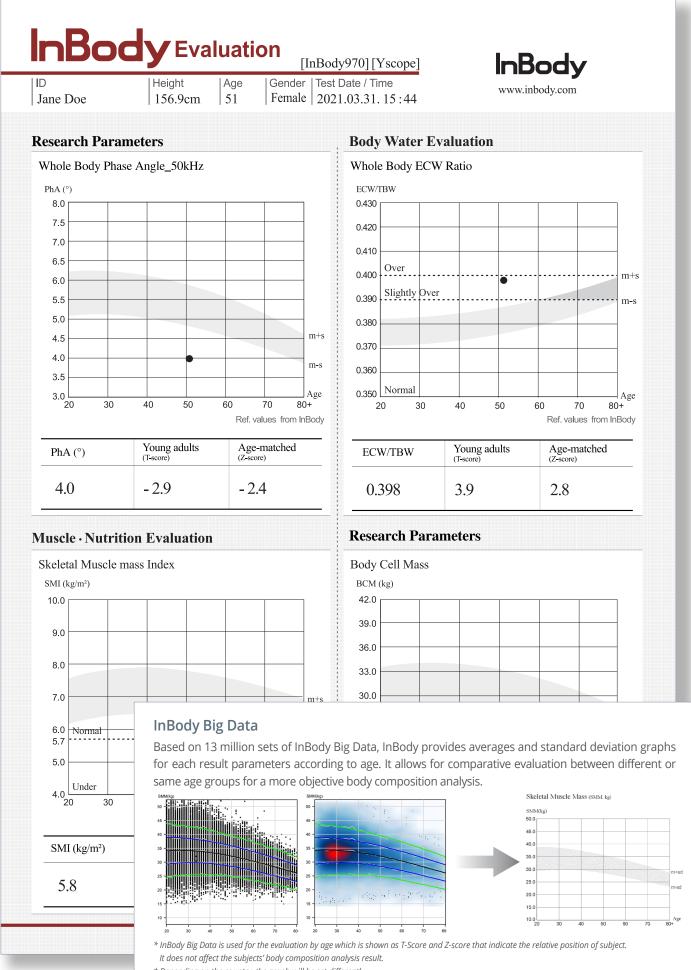

#### dy Phase Angle -

#### 4.0°


| Segmental | Body | Phase | Angle |  |
|-----------|------|-------|-------|--|
|-----------|------|-------|-------|--|

| <b>φ</b> (°) 5 <sub>kHz</sub><br>50 <sub>kHz</sub><br>250 <sub>kHz</sub> | RA  | LA<br>47 | TR<br>17 | RL  | LL<br>4 5 |
|--------------------------------------------------------------------------|-----|----------|----------|-----|-----------|
| 50 kHz                                                                   | 4.1 | 5.7      | 4.0      | 3.8 | 4.3       |
| 250 kHz                                                                  | 3.8 | 5.6      | 2.9      | 2.9 | 2.9       |

#### al Impedance Vector Analysis—




#### ce



Copyright ©1996~ by InBody Co., Ltd. All rights reserved. BR-English-00-B-140128

# **Evaluation Result Sheet**



\* Depending on the country, the graph will be set differently.

# InBody Research

|                | <b>y</b> uy       | re:              | searc       | [In              | Body970            | ][Yscope]                      |
|----------------|-------------------|------------------|-------------|------------------|--------------------|--------------------------------|
| ID<br>Jane Doe |                   | eight<br>56.9cm  | Age<br>  51 | Gender<br>Female | Test Date 2021.03. | / Time<br>31. 15 : 44          |
| Body Compo     | osition Su        | ımmary           | ,           |                  |                    |                                |
|                | FFM               | FM               | ICW         | ECW              | TBW                | ECW/TBW                        |
| Right Arm      | 2.00 kg           | 1.6 kg           | 0.96 L      | 0.59 L           | 1.55 L             | 0.378                          |
| Left Arm       | 1.91 kg           | 1.6 kg           | 0.93 L      | 0.56 L           | 1.49 L             | 0.378                          |
| Trunk          | 17.7 kg           | 11.8kg           | 8.3 L       | 5.5 L            | 13.8 L             | 0.398                          |
| Right Leg      | $5.24\mathrm{kg}$ | $3.0\mathrm{kg}$ | 2.46 L      | 1.66 L           | 4.12 L             | 0.403                          |
| Left Leg       | 5.15 kg           | $3.0\mathrm{kg}$ | 2.41 L      | 1.64 l           | 4.05 L             | 0.404                          |
| Whole Body     | 37.1 kg           | 22.0 kg          | 16.5 L      | 10.9 l           | 27.4 L             | 0.398                          |
| Weight         |                   | 59.1 kg          |             |                  |                    | values and sum ervical region. |

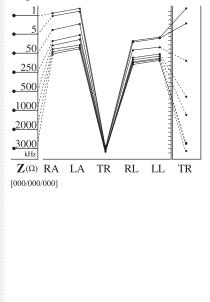
Lean Mass ICW ECW **Body Composition Analysis** ECW/TBW • Fat Mass <sup>90</sup> 100 37.1 Whole Body 70 80 90 120 150 160 170 110 130 140 (kg) 16.5 (L) = 10.9 (L) 22.0(230.2%) (kg) 0.340 0.360 0.380 0.390 0.400 0.410 0.420 0.450 0.320 0.430 0.440 0.398 240 96 80 140 160 180 200 220 **Right Arm** 40 60 100  $\overset{00}{=} 2.00^{120}$ (kg) (L) 0.96 (L) 0.59 1.6(179.2%) (kg) 0.340 0.360 0.380 0.390 0.320 0.400 0.410 0.420 0.430 0.440 0.450 ∞ 0.378 Left Arm 100 120 1.91 140 160 180 200 220 240 96 80 (kg) 0.93 (L) (L) 0.56 1.6(182.9%) (kg) 0.340 0.360 0.380 0.390 0.400 0.320 0.410 0.420 0.430 0.440 0.450 **∞** 0.378 % Trunk 90 110 17.7 160 170 70 80 100 120 130 140 150 (kg) (L) 8.3 (L) 5.5 (kg) 11.8(242.5%) 0.340 0.360 0.380 0.390 0.400 0.410 0.420 0.430 0 320 0 440 0 450 **22** 0.398 <sup>90</sup> 5.24 110 120 170 % **Right Leg** 70 100 130 140 150 160 80 (kg) 2.46 (L)(L)1.66 3.0(134.7%) (kg) 0.320 0.340 0.360 0.380 0.390 0.400 0.410 0.420 0.430 0.440 0.450 0.403 <sup>90</sup> 5.15 170 % 130 160 Left Leg 70 80 100 110 120 140 150 (kg) (L) 2.41 (L) 1.64 (kg) 3.0(133.7%) 0.340 0.360 0.380 0.390 0.400 0.410 0.420 0.430 0.440 0.450 0.320

**22** 0.404

InBody

www.inbody.com

| Research Paramete          | rs                    |                |
|----------------------------|-----------------------|----------------|
| Body Mass Index            |                       | n²(18.5~25.0)  |
| Percent Body Fat           | 37.2 %                | (18.0~28.0)    |
| Skeletal Muscle Mass       | $19.5  \mathrm{kg}$   | (19.5~23.9)    |
| Soft Lean Mass             | 34.9 kg               | (33.8~41.4)    |
| Protein                    | 7.1 kg                | (7.0~8.6)      |
| Mineral                    | $2.64  \mathrm{kg}$   | (2.44~2.98)    |
| Bone Mineral Content       | $2.18  \mathrm{kg}$   | (2.01~2.45)    |
| Basal Metabolic Rate       | $1171_{kcal}$         | (1255~1451)    |
| Waist Hip Ratio            | 0.94                  | (0.75~0.85)    |
| Waist Circumference        | 85.0 cm               |                |
| Visceral Fat Area          | 116.8 cm <sup>2</sup> |                |
| Obesity Degree             | 114%                  | ( 90~110 )     |
| Body Cell Mass             | $23.6  \mathrm{kg}$   | (23.4~28.6)    |
| Arm Circumference          | 30.5 cm               |                |
| Arm Muscle Circumference   | 26.0 cm               |                |
| TBW/FFM                    | 73.7 %                |                |
| Fat Free Mass Index        | 15.1 kg/m             | n <sup>2</sup> |
| Fat Mass Index             | $8.9  \mathrm{kg/m}$  | 1 <sup>2</sup> |
| Skeletal Muscle mass Index | 5.8 kg/m              | n <sup>2</sup> |
|                            |                       |                |


#### Whole Body Phase Angle-

 $\phi$ (°)<sub>50 kHz</sub>

| Segmental                       | Bod | y Phas | se An | gle — |     |
|---------------------------------|-----|--------|-------|-------|-----|
|                                 | RA  | LA     | TR    | RL    | LL  |
| Ø(°) 5 kHz<br>50 kHz<br>250 kHz | 1.7 | 4.7    | 1.7   | 1.6   | 4.5 |
| <b>7</b> 50 kHz                 | 4.1 | 5.7    | 4.0   | 3.8   | 4.3 |
| 250 kHz                         | 3.8 | 5.6    | 2.9   | 2.9   | 2.9 |

4.0<sup>°</sup>

#### Impedance -



Copyright©1996~ by InBody Co., Ltd. All rights reserved. BR-English-I4\_1-A-191001

# Comparison Result Sheet

| ane Doe                          | Height | m Age<br>51 |            | InBody970][Yscope]<br>Test Date / Time<br>2021.03.31.15:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------|--------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |        |             |            | Standard median curve — Today's Results — Recent Results (2021.03.20 15:12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Whole Body                       | Today  | Recent      | Difference | Xc(Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Weight (kg)                      | 59.1   | 60.5        | -1.4       | <sup>90</sup><br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SMM<br>Skeletal Muscle Mass (kg) | 19.5   | 19.8        | -0.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Body Fat Mass (kg)               | 22.0   | 22.8        | -0.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECW Ratio                        | 0.398  | 0.398       | 0.000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phase Angle (°)                  | 4.0    | 4.1         | -0.1       | $0 \xrightarrow{1}_{0} 100 200 300 400 500 600 700 800 900 1000 1100 R(\Omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Right Arm                        | Today  | Recent      | Difference | $\operatorname{Xc}(\Omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lean Mass (kg)                   | 2.00   | 2.06        | -0.06      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECW Ratio                        | 0.378  | 0.378       | 0.000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phase Angle (°)                  | 4.1    | 4.3         | -0.2       | $0 \rightarrow 0 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Left Arm                         | Today  | Recent      | Difference | Xc(Ω)<br><sup>50</sup> τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lean Mass (kg)                   | 1.91   | 1.98        | -0.07      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECW Ratio                        | 0.378  | 0.377       | +0.001     | 20 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phase Angle (°)                  | 5.7    | 5.7         | 0.0        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Right Leg                        | Today  | Recent      | Difference | $\operatorname{Xc}(\Omega)$ <sup>40</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lean Mass (kg)                   | 5.24   | 5.35        | -0.11      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECW Ratio                        | 0.403  | 0.403       | 0.000      | 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Phase Angle (°)                  | 3.8    | 3.8         | 0.0        | $0 \xrightarrow{\begin{array}{c} l \\ 0 \end{array}} \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \end{array} \xrightarrow{\begin{array}{c} l \\ 1 \\ 1 \\ 0 \end{array}} \begin{array}{c} l \\ 2 \\ 2 \\ 0 \end{array} \begin{array}{c} l \\ 1 \\ 2 \\ 0 \end{array} \xrightarrow{\begin{array}{c} l \\ 1 \\ 0 \end{array} \xrightarrow{\begin{array}{c} l \\ 1 \\ 0 \end{array}}} \begin{array}{c} l \\ 1 \\ 1 \\ 1 \\ 0 \end{array} \begin{array}{c} l \\ 1 \\ 1 \\ 0 \end{array} \begin{array}{c} l \\ 1 \\ 1 \\ 0 \end{array} \xrightarrow{\begin{array}{c} l \\ 1 \\ 0 \end{array} \xrightarrow{\begin{array}{c} l \\ 1 \\ 0 \end{array}}} \begin{array}{c} R(\Omega) \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $ |
| Left Leg                         | Today  | Recent      | Difference | $\operatorname{Xc}(\Omega)$ <sup>40</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lean Mass (kg)                   | 5.15   | 5.26        | -0.11      | 30 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ECW Ratio                        | 0.404  | 0.405       | -0.001     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Phase Angle (°)                  | 4.3    | 4.3         | 0.0        | $0 \xrightarrow{1}{0} 100 200 300 400 500 R(\Omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trunk                            | Today  | Recent      | Difference | $\operatorname{Xe}(\Omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lean Mass (kg)                   | 17.7   | 18.0        | -0.3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ECW Ratio                        | 0.398  | 0.399       | -0.00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### Yscope

Portable BIA abdominal fat analyzer

Abdominal Impedance

Abdominal Circumference

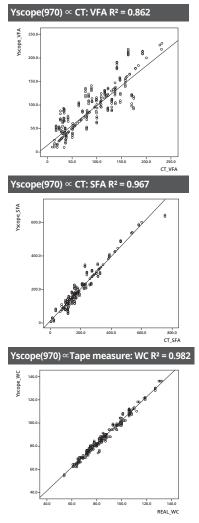




### Radiation-free and Safe for Regular Measurement

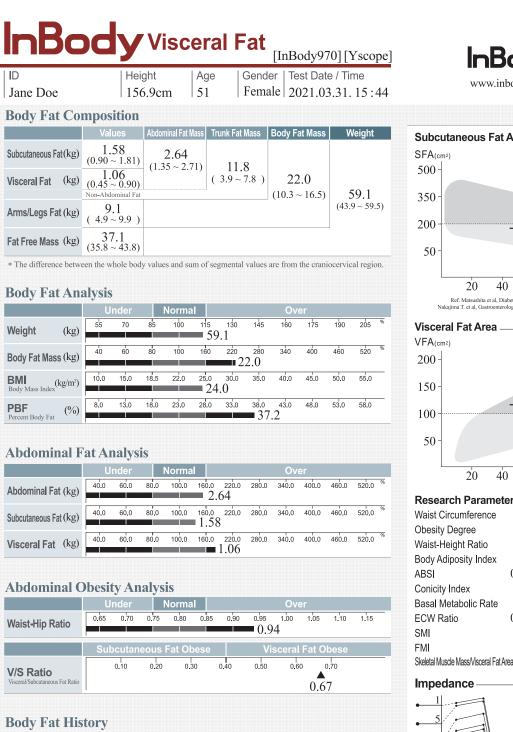
Yscope provides a comprehensive abdominal fat analysis, including visceral fat and subcutaneous fat measurements using the same BIA technology behind the professional InBody devices. It is a non-invasive, radiation-free solution for regularly monitoring and managing abdominal fat.

### Specialized Abdominal Fat Analysis


Besides fat analysis from InBody, Yscope provides in-depth analysis of abdominal fat for more accurate results.

The visceral fat and subcutaneous fat measurements provided by the Yscope have shown high correlation to CT scan results.

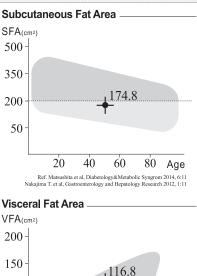
#### Easy and Quick Measurement

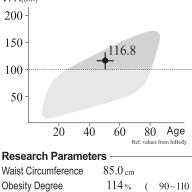

Yscope is a portable abdominal fat analyzer that can be integrated with the InBody970. In approximately 10 seconds, the Yscope provides a quick and easy solution for assessing essential abdominal parameters.



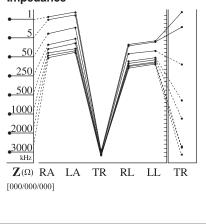


InBody


\* When Yscope is not connected, result may vary.




| Douy rat mis          | lory           |                   |                   |                   |                   |                   |                   |                   |
|-----------------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Weight (kg)           | 65.3           | 63.9              | 62.4              | 61.8              | 62.3              | 60.9              | 60.5              | 59.1              |
| Body Fat Mass (kg)    | 27.0           | 26.0              | 24.5              | 24.1              | 24.5              | 23.5              | 22.9              | 22.0              |
| Abdominal Fat (kg)    | 3.24           | 3.12              | 2.94              | 2.89              | 2.95              | 2.82              | 2.75              | 2.64              |
| Subcutaneous Fat (kg) | 1.94           | 1.87              | 1.76              | 1.73              | 1.76              | 1.69              | 1.64              | 1.58              |
| Visceral Fat (kg)     | 1.30           | 1.25              | 1.18              | 1.16              | 1.18              | 1.13              | 1.10              | 1.06              |
| ⊠Recent □Total        | 20.07.21 15:11 | 20.08.27<br>14:58 | 20.09.20<br>15:02 | 20.11.23<br>15:23 | 20.12.21<br>15:00 | 21.02.19<br>14:52 | 21.03.20<br>15:12 | 21.03.31<br>15:44 |




www.inbody.com





| Obesity Degree                       | 114 %                 | ( 90~110 )                 |
|--------------------------------------|-----------------------|----------------------------|
| Waist-Height Ratio                   | 0.54                  | ( 0.51 Under )             |
| Body Adiposity Index                 | 28.1                  | (26.9 Under)               |
| ABSI                                 | 0.081                 | (0.076 Under )             |
| Conicity Index                       | 1.27                  | ( 1.25 Under )             |
| Basal Metabolic Rate                 | 1171 kcal             | (1255~1451)                |
| ECW Ratio                            | 0.398                 | (0.360~0.400)              |
| SMI                                  | 5.8 kg/m              | 2                          |
| FMI                                  | 8.9 kg/m              |                            |
| Skeletal Muscle Mass/Visceral Fat Ar | rea $0.17  { m kg/m}$ | $^{2}(0.15 \text{ Over })$ |



Copyright©1996~ by InBody Co., Ltd. All rights reserved. BR-English-I4\_4-A-191001

| nBoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iy                                                                                                                        |                                                                                                                                                                                                        | [InBody970                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | InBody                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D<br>John Doe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Height<br>139.4cm                                                                                                         | Age   Gende<br>10   Male                                                                                                                                                                               |                                                                                                            | / Time<br>31. 16 : 40                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | www.inbody.com                                                                                                                                                                                                                                                                                                                                   |
| Body Compositio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Analysis                                                                                                               |                                                                                                                                                                                                        |                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |
| Fotal amount of water in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | my body Total Bo                                                                                                          | ody Water (L)                                                                                                                                                                                          | 19.1 (18.0                                                                                                 | 0 ~ 22.0)                                                                                                                                                                                                  | Growth S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Score                                                                                                                                                                                                                                                                                                                                            |
| What I need to build mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | scles Protein                                                                                                             | (kg)                                                                                                                                                                                                   | 5.1 ( 4.9                                                                                                  | 9~5.9)                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>85</b> / 100 Points                                                                                                                                                                                                                                                                                                                           |
| What I need for strong b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ones Mineral                                                                                                              | (kg)                                                                                                                                                                                                   | 1.91 (1.66                                                                                                 | 5~2.04)                                                                                                                                                                                                    | * If tall and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OJ / 100 Points<br>within great body comparison standards,                                                                                                                                                                                                                                                                                       |
| Where my excess energ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y is stored <b>Body F</b> a                                                                                               | at Mass (kg)                                                                                                                                                                                           | 8.9 ( 3.8                                                                                                  | 3 ~ 7.7 )                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | score may surpass 100 points.                                                                                                                                                                                                                                                                                                                    |
| Sum of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weight                                                                                                                    | (kg)                                                                                                                                                                                                   | 35.0 (27.3                                                                                                 | 3 ~ 36.9)                                                                                                                                                                                                  | Nutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evaluation                                                                                                                                                                                                                                                                                                                                       |
| Muscle-Fat Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vsis                                                                                                                      |                                                                                                                                                                                                        |                                                                                                            |                                                                                                                                                                                                            | Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normal Deficient                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jnder Norma                                                                                                               |                                                                                                                                                                                                        | Over                                                                                                       |                                                                                                                                                                                                            | Minerals<br>Body Fot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mormal □ Deficient                                                                                                                                                                                                                                                                                                                               |
| Neight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70 85 100                                                                                                                 | 115 130 145<br>35.0                                                                                                                                                                                    | 160 175                                                                                                    | 190 205 %                                                                                                                                                                                                  | Body Fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □ Normal □ Deficient M Excessive                                                                                                                                                                                                                                                                                                                 |
| Keletal Muscle Mass (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 90 100                                                                                                                 | 110 120 130                                                                                                                                                                                            |                                                                                                            | 160 170 %                                                                                                                                                                                                  | Obesity I<br>BMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evaluation                                                                                                                                                                                                                                                                                                                                       |
| Body Fat mass (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60 80 100                                                                                                                 | 160 220 280<br>8.9                                                                                                                                                                                     | 340 400                                                                                                    | 460 520 %                                                                                                                                                                                                  | PBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Box$ Normal $\Box$ <sup>Slightly</sup> $\mathbf{M}$ Over                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                        |                                                                                                            |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lance Evaluation                                                                                                                                                                                                                                                                                                                                 |
| <b>Obesity Analysis</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inder Norma                                                                                                               |                                                                                                                                                                                                        | Over                                                                                                       |                                                                                                                                                                                                            | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Balanced  Slightly Unbalanced Extremely Unbalanced                                                                                                                                                                                                                                                                                               |
| <b>3 M I</b> (kg/m <sup>2</sup> ) 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.9 13.9 16.4                                                                                                            | 18.6 20.2 22.2                                                                                                                                                                                         |                                                                                                            | 28.2 30.2                                                                                                                                                                                                  | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Balanced  Slightly Unbalanced Extremely Unbalanced                                                                                                                                                                                                                                                                                               |
| ody Mass Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           | 20.0 25.0 30.0                                                                                                                                                                                         |                                                                                                            |                                                                                                                                                                                                            | Upper-Lowe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er M Balanced  Slightly Extremely Unbalanced Unbalanced                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SU 100 150                                                                                                                |                                                                                                                                                                                                        |                                                                                                            | 45.0 50.0                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                  |
| - DF (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0 10.0 15.0                                                                                                             | 25.6                                                                                                                                                                                                   | 35.0 40.0 4                                                                                                | 45.0 50.0                                                                                                                                                                                                  | Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tal Lean Analysis ———                                                                                                                                                                                                                                                                                                                            |
| Percent Body Fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0 10.0 15.0                                                                                                             |                                                                                                                                                                                                        | 35.0 40.0 4                                                                                                | 45.0 50.0                                                                                                                                                                                                  | Segment<br>Right Arm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95 kg                                                                                                                                                                                                                                                                                                                                          |
| Growth Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           | 25.6                                                                                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                            | Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                |
| Growth Graph<br>Height : 5()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           | 25.6<br>BMI(kg/m <sup>2</sup> )                                                                                                                                                                        | : 50 ~ 85 <sup>°</sup>                                                                                     |                                                                                                                                                                                                            | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg                                                                                                                                                                                                                                                                                                         |
| Growth Graph<br>Height : 50<br>199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           | BMI(kg/m²)                                                                                                                                                                                             |                                                                                                            |                                                                                                                                                                                                            | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg                                                                                                                                                                                                                                                                                              |
| Growth Graph<br>Height : 50<br>Height(cm)<br>95<br>90<br>85<br>80<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~ 85%                                                                                                                     | BMI(kg/m <sup>2</sup> )<br>30<br>28                                                                                                                                                                    |                                                                                                            | %                                                                                                                                                                                                          | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters                                                                                                                                                                                                                                                                              |
| Growth Graph<br>Height : 50<br>Height(cm)<br>55<br>50<br>75<br>70<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~ 85%                                                                                                                     | <b>BMI</b> (kg/m²)<br>30<br>28<br>26                                                                                                                                                                   |                                                                                                            | %                                                                                                                                                                                                          | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Researc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948~1077)                                                                                                                                                                                                                                            |
| Crowth Graph<br>Height : 50<br>leight(cm)<br>150<br>155<br>155<br>155<br>155<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ 85%                                                                                                                     | BMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>26<br>24                                                                                                                                                  |                                                                                                            | 9⁄₀<br>97%<br>85%                                                                                                                                                                                          | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Basal Metal<br>Child Obesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948 ~1077)<br>ity Degree 109 % (90 ~110)<br>rody Phase Angle                                                                                                                                                                                         |
| Crowth Graph<br>Height : 50<br>leight(cm)<br>95<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ 85%                                                                                                                     | BMI(kg/m²)<br>30<br>28<br>26<br>24<br>22                                                                                                                                                               |                                                                                                            | %<br>97%                                                                                                                                                                                                   | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Basal Metal<br>Child Obesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948 ~1077)<br>ity Degree 109 % (90 ~110)<br>body Phase Angle                                                                                                                                                                                         |
| Crowth Graph<br>Height : 50<br>Height(cm)<br>99<br>86<br>80<br>90<br>85<br>85<br>80<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ 85%                                                                                                                     | 25.6<br>BMI<br>BM((kg/m <sup>2</sup> )<br>30<br>28<br>28<br>24<br>24<br>22<br>20                                                                                                                       |                                                                                                            | 9⁄₀<br>97%<br>85%                                                                                                                                                                                          | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br><b>Researcl</b><br>Basal Metal<br>Child Obesi<br><b>Whole B</b><br>$\phi(°)50$ kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948 ~1077)<br>ity Degree 109 % (90 ~110)<br>ody Phase Angle<br>2 4.3°<br>tal Body Phase Angle                                                                                                                                                        |
| Crowth Graph<br>Height : 50<br>Height(cm)<br>99<br>86<br>80<br>90<br>85<br>85<br>80<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ 85%                                                                                                                     | BMI(kg/m <sup>2</sup> )<br>30<br>28<br>26<br>24<br>22<br>20<br>18                                                                                                                                      |                                                                                                            | <ul> <li>2√0</li> <li>97%</li> <li>85%</li> <li>50%</li> </ul>                                                                                                                                             | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br><b>Researcl</b><br>Basal Metal<br>Child Obesi<br><b>Whole B</b><br>$\phi(°)50$ kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948 ~1077)<br>ity Degree 109 % (90 ~110)<br>cody Phase Angle<br>4.3°<br>tal Body Phase Angle<br>RA LA TR RL LL                                                                                                                                       |
| Crowth Graph<br>Height : 50<br>Height(cm)<br>99<br>90<br>95<br>90<br>95<br>90<br>95<br>90<br>95<br>90<br>95<br>90<br>95<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ 85%                                                                                                                     | BMI(kg/m²)<br>30<br>28<br>26<br>24<br>20<br>18<br>16                                                                                                                                                   |                                                                                                            | 0∕0<br>97%<br>85%<br>50%<br>15%                                                                                                                                                                            | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Researcl<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(°)$ 50 kHz<br>Segment<br>$\phi(°)$ 5 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters       bolic Rate    933 kcal (948 ~1077)      ty Degree    109 % (90 ~110)          tal Body Phase Angle      RA    LA      RA    LA          RA    LA      1.4    1.4          RA    LA      1.4    1.9 |
| Crowth Graph<br>Height : 5()<br>leight(cm)<br>25<br>0<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ 85%                                                                                                                     | BMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>24<br>22<br>20<br>18<br>16<br>14                                                                                                                          |                                                                                                            | 0∕0<br>97%<br>85%<br>50%<br>15%                                                                                                                                                                            | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(^{\circ})$ 5 kHz<br>50 kHz<br>250 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Growth Graph<br>Height : 50<br>eight(cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ 85%                                                                                                                     | BMI(kg/m²)<br>30<br>28<br>26<br>24<br>20<br>18<br>16                                                                                                                                                   |                                                                                                            | <ul> <li>√0</li> <li>97%</li> <li>85%</li> <li>50%</li> <li>50%</li> <li>15%</li> <li>3%</li> <li>15 16 17 18</li> </ul>                                                                                   | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Researcl<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(^{\circ})$ 50 kHz<br>Segment<br>$\phi(^{\circ})$ 5 kHz<br>250 kHz<br>Left Leg<br>Segment<br>Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Crowth Graph<br>Height : 50<br>keight(cm)<br>25<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ 85%                                                                                                                     | BMI(kg/m²)<br>30<br>28<br>26<br>24<br>20<br>18<br>16<br>14<br>12                                                                                                                                       | : 50 ~ 85 <sup>c</sup>                                                                                     | <ul> <li>2√0</li> <li>97%</li> <li>85%</li> <li>50%</li> <li>50%</li> <li>15%</li> <li>3%</li> <li>15%</li> <li>Age</li> </ul>                                                                             | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(^{\circ})$ 5 kHz<br>50 kHz<br>250 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Crowth Graph<br>Height : 50<br>keight(cm)<br>25<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>35<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ 85%                                                                                                                     | BMI(kg/m²)<br>30<br>28<br>28<br>28<br>24<br>22<br>20<br>18<br>16<br>14<br>12<br>3 4 5 6 7 8<br>* 7 growth charts of weights                                                                            | : 50 ~ 85 <sup>4</sup>                                                                                     | 2∕0<br>97%<br>97%<br>50%<br>50%<br>15%<br>3%<br>15%<br>3%<br>15%<br>400<br>85%<br>400<br>85%<br>400<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%<br>85%                                  | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Researcl<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(^{\circ})$ 50 kHz<br>Segment<br>$\phi(^{\circ})$ 50 kHz<br>250 kHz<br>Left Leg<br>Distribution<br>$\phi(^{\circ})$ 50 kHz<br>250 kHz<br>250 kHz<br>250 kHz<br>250 kHz<br>250 kHz<br>250 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Growth Graph<br>Height : 50<br>Height : 50<br>Heigh | ~ 85%<br>97%<br>50%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15                                                | BMI<br>BMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>24<br>20<br>18<br>16<br>14<br>12<br>3 4 5 6 7 8<br>* 7 growth charts of weights<br>* 7 growth charts of weights                                    | : 50 ~ 85 <sup>4</sup><br>9 10 11 12 13 14<br>stor ages were truncated of<br>138.5 135                     | %0           97%           85%           50%           15%           3%           115 16 17 18           Age           at 10 years of age.           0.0         139.4                                     | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br><b>Researcl</b><br>Basal Metal<br>Child Obesi<br><b>Whole B</b><br>$\phi(^{\circ})$ 50 kHz<br>Segment<br>$\phi(^{\circ})$ 5 kHz<br>250 kHz<br>250 kHz<br>250 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Growth Graph<br>Height : 50<br>Height : 50<br>Heigh | ~ 85%<br>97%<br>50%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15                                                | BMI<br>BMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>24<br>20<br>18<br>16<br>14<br>12<br>3 4 5 6 7 8<br>* 7 growth charts of weights<br>* 7 growth charts of weights                                    | : 50 ~ 85 <sup>4</sup>                                                                                     | %0           97%           85%           50%           15%           3%           115 16 17 18           Age           at 10 years of age.           0.0         139.4                                     | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br>Researcl<br>Basal Metal<br>Child Obesi<br>Whole B<br>$\phi(^{\circ})$ 50 kHz<br>Segment<br>$\phi(^{\circ})$ 5 kHz<br>250 kHz<br>Impedan<br>$\frac{1}{5}$<br>$\frac{1}{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Growth Graph<br>Height : 50<br>Height : 50<br>Heigh | $\sim 85\%$<br>37%<br>15%<br>12 13 14 15 16 17 18<br>Age<br><b>on History</b><br>.5 135.2 136.4<br>31.3 32.0<br>12.7 12.8 | BMI<br>BMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>24<br>20<br>18<br>16<br>14<br>12<br>3 4 5 6 7 8<br>* 7 growth charts of weights<br>* 7 growth charts of weights                                    | : 50 ~ 85 <sup>4</sup><br>9 10 11 12 13 14<br>10 ages were truncated of<br>138.5 139<br>34.0 34<br>13.1 13 | %0         97%         97%         85%         50%         15%         3%         115 16 17 18         Age         at 10 years of age.         0.0       139.4         .4       35.0         .2       13.3 | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br><b>Researcl</b><br>Basal Metal<br>Child Obesi<br><b>Whole B</b><br>$\phi(°) 50 \text{ kHz}$<br>Segment<br>$\phi(°) 5 \text{ kHz}$<br>Impedan<br>$\frac{1}{50}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{50000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{500}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}{5000}$<br>$\frac{1}$ | $\begin{array}{c} 0.95 \text{ kg} \\ 0.94 \text{ kg} \\ 10.8 \text{ kg} \\ 3.41 \text{ kg} \\ 3.37 \text{ kg} \end{array}$ h Parameters   bolic Rate 933 kcal (948 ~1077)   ity Degree 109 % (90 ~110)   ody Phase Angle                                                                                                                         |
| Growth Graph           Height : 50           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90           90 <td>~ 85%<br/>97%<br/>50%<br/>15%<br/>15%<br/>15%<br/>15%<br/>15%<br/>15%<br/>15%<br/>15</td> <td>EMI(kg/m<sup>2</sup>)<br/>30<br/>28<br/>28<br/>28<br/>28<br/>24<br/>22<br/>20<br/>18<br/>16<br/>14<br/>12<br/>3 4 5 6 7 8<br/>+ 7 growth cherts of weights<br/>+ 137.2 137.9<br/>32.8 33.5<br/>13.0 13.1<br/>22.0 22.1</td> <td>: 50 ~ 85°</td> <td>%0         97%         97%         85%         50%         15%         3%         115 16 17 18         Age         at 10 years of age.         0.0       139.4         .4       35.0         .2       13.3</td> <td>Segment<br/>Right Arm<br/>Left Arm<br/>Trunk<br/>Right Leg<br/>Left Leg<br/><b>Researcl</b><br/>Basal Metal<br/>Child Obesi<br/><b>Whole B</b><br/><math>\phi(°) 50 \text{ kHz}</math><br/>Segment<br/><math>\phi(°) 5 \text{ kHz}</math><br/>Sol kHz<br/>1mpedan<br/><math>\frac{1}{50}</math><br/><math>\frac{1}{500}</math><br/><math>\frac{1}{500}</math></td> <td>0.95 kg<br/>0.94 kg<br/>10.8 kg<br/>3.41 kg<br/>3.37 kg<br/>h Parameters<br/>bolic Rate 933 kcal (948 ~1077)<br/>ity Degree 109 % (90 ~110)<br/>rody Phase Angle<br/><math>4.3^{\circ}</math><br/>tal Body Phase Angle<br/>RA LA TR RL LL<br/>1.4 1.4 3.0 1.9 1.8<br/>3.6 3.3 6.8 5.0 4.8<br/>3.7 3.6 9.4 5.0 4.9<br/>nce</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~ 85%<br>97%<br>50%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15%<br>15                                                | EMI(kg/m <sup>2</sup> )<br>30<br>28<br>28<br>28<br>28<br>24<br>22<br>20<br>18<br>16<br>14<br>12<br>3 4 5 6 7 8<br>+ 7 growth cherts of weights<br>+ 137.2 137.9<br>32.8 33.5<br>13.0 13.1<br>22.0 22.1 | : 50 ~ 85°                                                                                                 | %0         97%         97%         85%         50%         15%         3%         115 16 17 18         Age         at 10 years of age.         0.0       139.4         .4       35.0         .2       13.3 | Segment<br>Right Arm<br>Left Arm<br>Trunk<br>Right Leg<br>Left Leg<br><b>Researcl</b><br>Basal Metal<br>Child Obesi<br><b>Whole B</b><br>$\phi(°) 50 \text{ kHz}$<br>Segment<br>$\phi(°) 5 \text{ kHz}$<br>Sol kHz<br>1mpedan<br>$\frac{1}{50}$<br>$\frac{1}{500}$<br>$\frac{1}{500}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.95 kg<br>0.94 kg<br>10.8 kg<br>3.41 kg<br>3.37 kg<br>h Parameters<br>bolic Rate 933 kcal (948 ~1077)<br>ity Degree 109 % (90 ~110)<br>rody Phase Angle<br>$4.3^{\circ}$<br>tal Body Phase Angle<br>RA LA TR RL LL<br>1.4 1.4 3.0 1.9 1.8<br>3.6 3.3 6.8 5.0 4.8<br>3.7 3.6 9.4 5.0 4.9<br>nce                                                  |

Copyright ©1996~ by InBody Co., Ltd. All rights reserver R-English-00-C-190318

# InBody Health Check-up



### **Blood Pressure Test** Stadiometer Test Start measuring blood pressure Measure your height with BSM. with BPBIO, and the test result will Accurate height measurement is automatically be transferred to crucial for a precise InBody Test InBody device. STEP STEP Yscope Test Member Identification Pull the lever to get the Identify Members with InBody BAND, impedance, and roll the wheel to Fingerprint or Barcode Scanner measure the circumference. STEP STEP

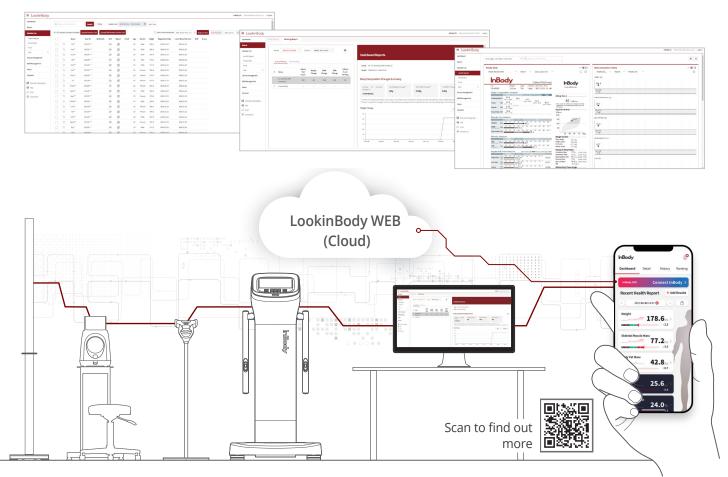


InBody Test Take the InBody Test by stepping on the footplate and grabbing the handles.

STEP



 $\bigcirc$ 


Get Your Result Get a comprehensive test result in one page and consult with professionals

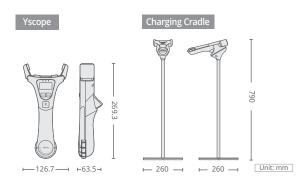
STEP



# Data Management Program

LookinBody Web allows you to view InBody data through cloud, and provides an analytical dashboard by the branches, or staff.




# InBody Integration Solution



# Specifications

| Storage Environment<br>Weight Range<br>Age Range<br>Height Range | 5~300kg (11~660.1lb)<br>3~99 years<br>95~220cm (3ft 1.40in ~ 7ft 2.61in)                                       |                              | Mass, Visceral Fat Mass)<br>• Abdominal Obesity Analysis (Waist-Hip Ratio, Visceral/Subcuta<br>neous Fat Ratio)<br>• Visceral/Subcutaneous Fat Area Ratio      | Degree, Waist/Height Ratio, Body Adiposity Index, ABSI,<br>Conicity Index, Basal Metabolic Rate, ECW Ratio, SMI,<br>FMI, Skeletal Muscle Mass/Visceral Fat Area)<br>• Impedance Graph (Each segment and each frequency) |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weight Range                                                     |                                                                                                                |                              | Abdominal Obesity Analysis (Waist-Hip Ratio, Visceral/Subcuta                                                                                                  | Conicity Index, Basal Metabolic Rate, ECW Ratio, SMI,                                                                                                                                                                   |
| Weight Range                                                     |                                                                                                                |                              |                                                                                                                                                                |                                                                                                                                                                                                                         |
|                                                                  | E-200kg (11-660.1b)                                                                                            |                              |                                                                                                                                                                |                                                                                                                                                                                                                         |
|                                                                  |                                                                                                                |                              | Abdominal Fat Analysis (Abdominal Fat Mass, Subcutaneous Fat                                                                                                   |                                                                                                                                                                                                                         |
|                                                                  | -10~70°C (14~158'F) ,10~80% RH, 50~106kPa (No Condensation)                                                    |                              | • Body Fat Analysis (Weight, Body Fat Mass, BMI, Percent Body Fat)                                                                                             | Fat Mass, Subcutaneous Fat Mass, Visceral Fat Mass)                                                                                                                                                                     |
|                                                                  | : 10~40°C (50~104'F), 30~75% RH, 70~106kPa                                                                     |                              | Mass, Body Fat Mass, Weight)                                                                                                                                   | Body Fat Change (Weight, Body Fat Mass, Abdominal                                                                                                                                                                       |
| Test Duration                                                    | About 90 seconds                                                                                               | Result Sheet                 | Abdominal Fat Mass, Arm/Leg Fat, Fat Free Mass, Trunk Fat                                                                                                      | Visceral Fat Area                                                                                                                                                                                                       |
| Equipment Weight                                                 | 46kg (101.4lb)                                                                                                 | Visceral Fat                 | Body Fat Composition (Subcutaneous Fat, Visceral Fat,                                                                                                          | Subcutaneous Fat Area                                                                                                                                                                                                   |
| Dimensions                                                       | 614.1(W) x 963.8(L) x 1239.3(H): mm                                                                            |                              | Whole Body Phase Angle (50kHz)     Impedance Graph (Each segment and each frequency)                                                                           |                                                                                                                                                                                                                         |
| Compatible Printer                                               | InBody970 compatible printers available at www.inbodyservice.com                                               |                              | Segmental Body Phase Angle (5kHz, 50kHz, 250kHz; Right Arm, Le                                                                                                 | ft Arm, Trunk, Right Leg, Left Leg)                                                                                                                                                                                     |
|                                                                  | 1EA, Wi-Fi 1EA                                                                                                 |                              | Circumference, Arm Muscle Circumference, TBW/FFM)                                                                                                              |                                                                                                                                                                                                                         |
| External Interface                                               | RS-232C 4EA, USB Host 2EA, USB Slave 1EA, LAN(10/100T) 1EA, Bluetooth                                          |                              | <ul> <li>Research Parameters (BMI, Percent Body Pat, Percent Addominal P<br/>FMI, Skeletal Muscle Mass, FFMI, SMI, Protein, Body Cell Mass, Mir</li> </ul>     |                                                                                                                                                                                                                         |
| Internal Interface                                               | Touchscreen, Keypad                                                                                            | Result Sheet                 | <ul> <li>Body Composition Analysis (Lean Mass, ICW, ECW, Fat Mass, ECW/TBV</li> <li>Research Parameters (BMI, Percent Body Fat, Percent Abdominal F</li> </ul> |                                                                                                                                                                                                                         |
| Display Type                                                     | 1280 x 800 10.1inch Color TFT LCD                                                                              | Research                     | Body Composition Summary (Fat Free Mass, Body Fat Mass, Intracellul     Body Composition Applyring (Loop Mass, ICM, Ept Mass, ECM/(TD))                        |                                                                                                                                                                                                                         |
|                                                                  | (GSM40A12-P1IR) Power Output DC 12V, 3.34A                                                                     |                              | Cole-Cole Plot (Today, Recent, Standard Median Curve)                                                                                                          |                                                                                                                                                                                                                         |
|                                                                  | Mean Well Power Input AC 100-240V, 50-60Hz, 1.0-0.5A                                                           |                              | Current-Previous Result difference)                                                                                                                            |                                                                                                                                                                                                                         |
|                                                                  | Power Output DC 12V, 3.4A                                                                                      | Result Sheet                 | Current-Previous Result difference)<br>• Lean Mass, ECW Ratio, Phase Angle: Right Arm, Left Arm, Trunk, R                                                      | ight Leg. Left Leg (Current Result. Previous Result                                                                                                                                                                     |
|                                                                  | (BPM040S12F07) (1.2A-0.6A)                                                                                     | Comparison<br>Result Sheet   | Weight, Skeletal Muscle Mass, Body Fat Mass, ECW Ratio, Phase A     Current, Provious, Posult difference)                                                      | ngle: Whole Body (Current Result, Previous Result,                                                                                                                                                                      |
| Adapter                                                          | Bridgepower Power Input AC 100-240V, 50-60Hz, 1.2A                                                             |                              | Right Leg, Left Leg): Amount, Evaluation                                                                                                                       |                                                                                                                                                                                                                         |
| Applied Rating Current                                           | 1kHz : 70uA (+-10uA), Over 5kHz : 300uA (+-30uA)                                                               |                              | Lean Mass (LM) Balance(Right Arm, Left Arm, Trunk,                                                                                                             |                                                                                                                                                                                                                         |
| QR Code                                                          | See your result on InBody mobile App                                                                           |                              | Fat Mass Index (FMI,kg/m <sup>2</sup> ): (T-Score, Z-score)     Fat Free Mass Index (FFMI,kg/m <sup>2</sup> ): (T-Score, Z-score)                              | • Total Body Water/Weight (%): (T-Score, Z-Score)                                                                                                                                                                       |
| Backup data                                                      | Backup data saved in InBody970 by using an InBody USB                                                          |                              | <ul> <li>Skeletal Muscle mass Index (SMI,m<sup>2</sup>): (T-Score, Z-score)</li> <li>Fat Mass Index (FMI,kg/m<sup>2</sup>): (T-Score, Z-score)</li> </ul>      | • Extracellular Mass/Body Cell Mass (ECM/BCM):<br>(T-Score, Z-Score)                                                                                                                                                    |
| tion Function                                                    | personal information to the InBody970                                                                          |                              | Percent Body Fat (PBF,%): (T-Score, Z-score)     Gueletal Musele mana la day (CMI == 2); (T. Score, Z. score)                                                  | Skeletal Muscle Mass/WT,     States and Mass (ECM/RCM)                                                                                                                                                                  |
| Fingerprint Recogni-                                             | Recognizes the fingerprint of the measurer and automatically inputs                                            |                              | Trunk, Right Leg, Left Leg): Evaluation                                                                                                                        | • Weight (kg): (T-Score, Z-score)                                                                                                                                                                                       |
| Recognition Function                                             | inputs personal information to the InBody970                                                                   |                              | ECW Ratio (ECW/TBW) Balance (Right Arm, Left Arm,                                                                                                              | Outer Circumference(cm)                                                                                                                                                                                                 |
| InBodyBAND Series                                                | Recognizes the InBodyBAND series of the subject and automatically                                              |                              | Bioeletrical Impedance Vector Analysis (BIVA)     Whole Body Phase Angle_50kHz (PhA,°): (T-Score, Z-score)                                                     | Waist Hip Ratio (WHR): (T-Score, Z-score)     Body Cell Mass (BCM,kg): (T-Score, Z-score)                                                                                                                               |
| Barcode Reader                                                   | Member ID will be automatically inputted when the Barcode is scanned                                           |                              | <ul> <li>Body Mass Index (BMI,kg/m<sup>2</sup>): (T-Score, Z-score)</li> </ul>                                                                                 | & ECW/TBW)                                                                                                                                                                                                              |
| and up                       | on Excel or LookinBody120)                                                                                     | Result Sheet                 | Visceral Fat Area (VFA,cm <sup>2</sup> ): (T-Score, Z-score)                                                                                                   | <ul> <li>Skeletal Muscle Mass and ECW Ratio (SMM,% &amp; ECW/TBW</li> <li>Skeletal Muscle mass Index and ECW Ratio (SMI,kg/m<sup>2</sup></li> </ul>                                                                     |
| Administrator Menu<br>InBody USB                                 | Copy, backup, or restore the LookinBody test data (data can be viewed                                          | Evaluation                   | Soft Lean Mass, Body Fat Mass)  • Whole Body ECW Ratio (ECW/TBW): (T-Score, Z-score)                                                                           | Skeletal Muscle Mass and ECW Ratio (SMM,% & ECW/TBW                                                                                                                                                                     |
|                                                                  | Setup: Configure settings and manage data<br>Troubleshooting: Additional information to help use the InBody970 |                              | Muscle-Fat Analysis (Weight, Skeletal Muscle Mass,<br>Soft Lean Mass, Body Fat Mass)                                                                           | Impedance Graph (Each segment and each frequency)                                                                                                                                                                       |
| Administrator Menu                                               | Setup: Configure settings and manage data                                                                      |                              | Water, Extracellular Water, Extracellular Water Ratio)                                                                                                         | • Whole Body Phase Angle (50kHz)                                                                                                                                                                                        |
| Data Storage                                                     | Saves up to 100,000 measurements (When ID is entered)                                                          |                              | Body Water Composition History (Weight, Total Body, Intracellular                                                                                              | Right Arm, Left Arm, Trunk, Right Leg, Left Leg)                                                                                                                                                                        |
| Voice Guidance                                                   | Sheet for Children, Visceral Fat Result Sheet Audible guidance for test in progress and test complete          |                              | <ul> <li>Segmental ECW Analysis (Right Arm, Left Arm, Trunk,<br/>Right Leg, Left Leg)</li> </ul>                                                               | • QR Code<br>• Segmental Body Phase Angle (5kHz, 50kHz, 250kHz:                                                                                                                                                         |
|                                                                  | Result Sheet, Research Result Sheet, Comparison Result Sheet, Result                                           |                              | Free Mass, Bone Mineral Content)                                                                                                                               | Result Interpretation QR Code     OB Code                                                                                                                                                                               |
| Type of Result<br>Sheets                                         | Body Composition Result Sheet, Body Water Result Sheet, Evaluation                                             |                              | Body Composition Analysis (Protein, Minerals, Body Fat Mass, Fat                                                                                               | Blood Pressure (Max/Min/Pulse Rate, Avg/Pulse pressure/R.P.P                                                                                                                                                            |
| Digital Results                                                  | LCD Screen, LookinBody Web, LookinBody120                                                                      |                              | Right Leg, Left Leg)                                                                                                                                           | Muscle Circumference, TBW/FFM, FMI, FFMI, SMI)                                                                                                                                                                          |
| Logo Display                                                     | Name, Address and Content Information can be shown on the Results Sheet                                        |                              | ECW Ratio Analysis (ECW Ratio)     Segmental Body Water Analysis (Right Arm, LeftArm, Trunk,                                                                   | Rate, Waist-Hip Ratio, Visceral Fat Area, Obesity<br>Degree, Body Cell Mass, Arm Circumference, Arm                                                                                                                     |
| Laga Dianta:                                                     | BPBIO750), Yscope, and InBodyBAND Series                                                                       |                              | Extracellular Water)                                                                                                                                           | Research Parameters (Fat Free Mass, Basal Metabolic                                                                                                                                                                     |
| Compatible Device                                                | BSM Series (BSM170B, BSM370, BSM270B), BPBIO Series (BPBIO320,                                                 | Body Water<br>Result Sheet   |                                                                                                                                                                | Obesity Evaluation (BMI, Percent Body Fat)                                                                                                                                                                              |
| Body Composition<br>Calculation Method                           | No Empirical Estimation (Age and Gender does not affect the result)                                            | Rody Water                   | Segmental Lean Analysis (Right Arm, Left Arm, Trunk, Right Leg, Left Leg)                                                                                      | Impedance Graph (Each segment and each frequency)                                                                                                                                                                       |
|                                                                  | Simultaneous Multi-Frequency Bioelectrical Impedance Analysis (SMF-BIA)                                        |                              | Body Balance (Upper, Lower, Upper-Lower)                                                                                                                       | Whole Body Phase Angle (50kHz)                                                                                                                                                                                          |
| Measurement Method                                               | Direct Segmental Multi-Frequency Biolectrical Impedance Analysis (DSM-BIA)                                     |                              | Nutrition Evaluation (Protein, Minerals, Fat Mass)     Obesity Evaluation (BMI, Percent Body Fat)                                                              | Segmental Body Phase Angle (5kHz, 50kHz, 250kHz:<br>Right Arm, Left Arm, Trunk, Right Leg, Left Leg)                                                                                                                    |
| Electrode Method                                                 | Tetrapolar 8-Point Tactile Electrodes                                                                          |                              | Percent Body Fat)                                                                                                                                              | • QR Code                                                                                                                                                                                                               |
|                                                                  | Left Leg)                                                                                                      |                              |                                                                                                                                                                | Result Interpretation QR Code                                                                                                                                                                                           |
|                                                                  | Segments (Right Arm, Left Arm, Trunk, Right Leg, and                                                           |                              | Growth Graph (Height, Weight, BMI)     Growth Score                                                                                                            | Bone Mineral Content, Body Cell Mass, FFMI, FMI)<br>• Blood Pressure (Max/Min/Pulse Rate, Avg/Pulse pressure/R.P.F                                                                                                      |
|                                                                  | Phase Angle 15 Phase Angle Measurements by Using 3 Different<br>Frequencies (5kHz, 50kHz, 250kHz) at Each of 5 |                              | Obesity Analysis (Body Mass Index, Percent Body Fat)     Count & Count (Unicht, Multicht, 200)                                                                 | Water, Basal Metabolic Rate, Child Obesity Degree,                                                                                                                                                                      |
|                                                                  | 1MHz, 2MHz, 3MHz) at Each of 5 Segments (Right<br>Arm, Left Arm, Trunk, Right Leg and Left Leg)                | for children                 | Muscle-Fat Analysis (Weight, Skeletal Muscle Mass, Body Fat Mass)                                                                                              | Research Parameters (Intracellular Water, Extracellular                                                                                                                                                                 |
|                                                                  |                                                                                                                | Result Sheet<br>for Children | Body Composition Analysis (Total Body Water, Protein, Mineral,<br>Body Fat Mass, Fat Free Mass, Soft Lean Mass, Weight)                                        | <ul> <li>Segmental Body Water Analysis (Right Arm, Left Arm,<br/>Trunk, Right Leg, Left Leg)</li> </ul>                                                                                                                 |
| Analysis (BIA)<br>Measurement Item                               | Impedance(Z) Frequencies (1kHz, 5kHz, 50kHz, 250kHz, 500kHz,<br>1MHz, 2MHz, 3MHz) at Each of 5 Segments (Bight |                              | Result parameters and Result interpretation                                                                                                                    | - Composited DephyMatery Applieds (District Association)                                                                                                                                                                |
| Bioelectric Impedance                                            | Bioelectrical 40 Impedance Measurements by Using 8 Different                                                   |                              | Nutrition Evaluation (Protein, Minerals, Fat Mass)                                                                                                             | Impedance Graph (Each segment and each frequency)                                                                                                                                                                       |
|                                                                  |                                                                                                                |                              | • Body Type (Graph)                                                                                                                                            | Whole Body Phase Angle (50kHz)                                                                                                                                                                                          |
| ⊢— 614.1 ——                                                      | ← 614.1 ← 963.8 ← Unit: mm                                                                                     |                              | Muscle Control)                                                                                                                                                | Arm, Left Arm, Trunk, Right Leg, Left Leg)                                                                                                                                                                              |
|                                                                  |                                                                                                                |                              | Visceral Fat Area (Graph)     Weight Control (Target Weight, Weight Control, Fat Control,                                                                      | • QR Code     • Segmental Body Phase Angle (5kHz, 50kHz, 250kHz: Right                                                                                                                                                  |
|                                                                  |                                                                                                                |                              | InBody Score     Viscoral Est Area (Craph)                                                                                                                     | Result Interpretation QR Code     OR Code                                                                                                                                                                               |
|                                                                  |                                                                                                                |                              | Percent Body Fat, ECW Ratio)                                                                                                                                   | Blood Pressure (Max/Min/Pulse Rate, Avg/Pulse pressure/R.P.I                                                                                                                                                            |
|                                                                  |                                                                                                                |                              | Body Composition History (Weight, Skeletal Muscle Mass,                                                                                                        | Expenditure of Exercise, InBody Score)                                                                                                                                                                                  |
| 8 8                                                              |                                                                                                                |                              | ECW Ratio Analysis (ECW Ratio)     Segmental ECW Ratio                                                                                                         | Arm Circumference, Arm Muscle Circumference,<br>FMI, FFMI, SMI, Recommended Calorie Intake, Calorie                                                                                                                     |
| a 🤻 a                                                            | 1,239                                                                                                          |                              | Segmental ECW Analysis                                                                                                                                         | Obesity Degree, Bone Mineral Content, Body Cell Mass,                                                                                                                                                                   |
| hibor                                                            |                                                                                                                |                              | Segmental ICW Analysis                                                                                                                                         | Waist-Hip Ratio, Visceral Fat Level, Visceral Fat Area,                                                                                                                                                                 |
| FAFA                                                             |                                                                                                                |                              | Segmental Lean Analysis     Segmental Fat Analysis                                                                                                             | <ul> <li>Research Parameters (Extracellular Water, Intracellular Wate<br/>Skeletal Muscle Mass, Fat Free Mass, Basal Metabolic Rate</li> </ul>                                                                          |
|                                                                  |                                                                                                                |                              | Obesity Analysis (Body Mass Index, Percent Body Fat)     Segmental Leap Applysis                                                                               | Visceral Fat Level (Graph)     Percent December (Extracellular Water, Intracellular Water                                                                                                                               |
|                                                                  |                                                                                                                |                              | Muscle-Fat Analysis (Weight, Skeletal Muscle Mass, Body Fat Mass)                                                                                              |                                                                                                                                                                                                                         |
|                                                                  |                                                                                                                | nesure sneet                 | Body Fat Mass, Weight)                                                                                                                                         | Body Balance Evaluation (Upper, Lower, Upper-Lower)                                                                                                                                                                     |
|                                                                  | 70 BODY COMPOSITION ANALYZER                                                                                   | Result Sheet                 | Result parameters and Result interpretation<br>• Body Composition Analysis (Total Body Water, Protein, Mineral,                                                | Obesity Evaluation (BMI, Percent Body Fat)                                                                                                                                                                              |

### Yscope ABDOMINAL FAT ANALYZER



| Bioelectrical Impedance Analysis (BIA) | Bioelectrical Impedance(Z) Trunk Impedance Measurement at 50kHz, 250kHz                                                                                |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Electrode Method                       | Biopolar 4-point Tectile Electrodes                                                                                                                    |  |  |
| Measurement Method                     | Direct-Segmental Multi-Frequency Bioelectrical Impedance Analysis (DSM-BIA)<br>Simultaneous Multi-Frequency Bioelectrical Impedance Analysis (SMF-BIA) |  |  |
| Body Composition Calculation Method    | No Empirical Estimation (Age and Gender does not affect the result)                                                                                    |  |  |
| Measurement Results                    | Visceral Fat Area, Subcutaneous Fat Area                                                                                                               |  |  |
| Applied Rating Current                 | 350uA                                                                                                                                                  |  |  |
| Rated Power                            | DC 3.63V, 2600mAh (Lithium ion battery)                                                                                                                |  |  |
| Charing Voltage                        | DC 5.0V                                                                                                                                                |  |  |
| Display                                | OLED                                                                                                                                                   |  |  |
| Color                                  | White                                                                                                                                                  |  |  |
| Dimensions                             | Yscope (126.7(W) × 269.3(L) × 63.5(H) : mm)<br>Charging Cradle (260(W) × 260(L) × 790(H) : mm)                                                         |  |  |
| Equipment Weight                       | Yscope 0.3kg(0.7lb), Charging Cradle 2.5kg(5.5lb)                                                                                                      |  |  |
| Test Duration                          | About 5 seconds                                                                                                                                        |  |  |
| Operation Environment                  | 10~40°C (50~104'F), 30~75% RH, 70~106kPa                                                                                                               |  |  |
| Storage Environment                    | -10~70°C(14~158'F) ,10~80% RH, 50~106kPa (No Condensation)                                                                                             |  |  |
| Age Range                              | 3~99 years                                                                                                                                             |  |  |
|                                        | + Considerations may also may also an existent exists                                                                                                  |  |  |

\* Specifications may change without prior notice. \* QR Code is a registered trademark of DENSO WAVE INCORPORATED



The power of InBody

InBody maintains a high brand position with the highest level of technology.



#### Certifications obtained by InBody

InBody complies with the quality management system according to international standards. We satisfy country-specific regulatory requirements that apply to product safety and performance, and provide related services.



#### InBody's Intellectual Property Rights

China paten

InBody owns patents and intellectual property rights around the world and provides products with high accurancy and reproducibility based on this technology.



U.S patent



#### InBody HQ [KOREA]

InBody Co., Ltd. 625, InBody Bldg., Eonju-ro, Gangnam-gu, Seoul 06106 Republic of Korea TEL: +82-2-501-3939 FAX : +82-2-578-5669 Website: https://inbody.com E-mail: info@inbody.com

#### InBody Asia [ASIA]

InBody Asia Sdn. Bhd. Unit 3A-11, Oval Damansara, 685 Jalan Damansara Kuala Lumpur, WP KL 60000 Malaysia TEL : +60-3-7732-0790 FAX: +60-3-7733-0790 Website: https://inbodyasia.com E-mail: info@inbodyasia.com InBody USA [USA] Biospace Inc. dba InBody 13850 Cerritos Corporate Dr. Unit C Cerritos, CA 90703 USA TEL: +1-323-932-6503 FAX: +1-323-952-5009 Website: https://inbodyusa.com E-mail: info.us@inbody.com

#### InBody Europe [EU]

InBody Europe B.V. Gyroscoopweg 122, 1042 AZ, Amsterdam, The Netherlands TEL:+31-20-238-6080 FAX:+31-6-5734-1858 Website: https://nl.inbody.com E-mail: info.eu@inbody.com

#### InBody Japan [JAPAN]

InBody Japan Inc. Tani Bldg, 1-28-6, Kameido, Koto-ku, Tokyo 136-0071 Japan TEL: +81-3-5875-5780 FAX : +81-3-5875-5781 Website: https://www.inbody.co.jp E-mail: inbody@inbody.co.jp

#### InBody India [INDIA]

InBody India Pvt.Ltd. Unit No. G-B 10, Ground Floor, Art Guild House, Phoenix Market City, L.B.S. Marg, Kurla (West), Mumbai 400070 India TEL : +91-22-6223-1911 Website: http://inbody.in E-mail: india@inbody.com

#### InBody China [CHINA]

Biospace China Co., Ltd. 904, XingDiPlaza, No.1698 YiShanRoad, Shanghai 201103 China TEL: +86-21-6443-9705 FAX : +86-21-6443-9706 Website: https://inbodychina.com E-mail: info@inbodychina.com